认证机构
长春理工大学
通行码认证
您所在位置
请授权位置并确认在机构认证范围内
授权
请重启微信或者浏览器后重新授权认证
请输入通行码 (不区分大小写)
验证
阅读
【简介】本书用通俗易懂的语言深入浅出地介绍了强化学习的基本原理,覆盖了传统的强化学习基本方法和当前炙手可热的深度强化学习方法。开篇从最基本的马尔科夫决策过程入手,将强化学习问题纳入到严谨的数学框架中,接着阐述了解决此类问题最基本的方法——动态规划方法,并从中总结出解决强化学习问题的基本思路:交互迭代策略评估和策略改善。基于这个思路,分别介绍了基于值函数的强化学习方法和基于直接策略搜索的强化学习方法。最后介绍了逆向强化学习方法和近年具有代表性、比较前沿的强化学习方法。 除了系统地介绍基本理论,书中还介绍了相应的数学基础和编程实例。